| 1. fejezet | 7 |
| Valószínűségelméleti alapok | 7 |
| A véletlen esemény fogalma | 7 |
| A valószínűség fogalma. Valószínűségszámítási axiómák | 12 |
| Kombinatorikai alapok | 18 |
| Példák valószínűségek kombinatorikus kiszámítására | 24 |
| Feltételes valószínűség és függetlenség | 30 |
| 2. fejezet | |
| Valószínűségi változók és valószínűségeloszlások | 38 |
| A valószínűségi változó és a valószínűségeloszlás fogalma | 38 |
| A többdimenziós eloszlás fogalma | 48 |
| Feltétele eloszlás- és sűrűségfüggvény | 52 |
| Valószínűségi változó monoton függvényének eloszlása | 57 |
| Két valószínűségi változó összegének eloszlása | 58 |
| Két független valószínűségi változó szorzatának és hányadosának eloszlása | 60 |
| Valószínűségeloszlások jellemző adatai | 60 |
| A generátorfüggvény és a karakterisztikus függvény | 78 |
| Nevezetes valószínűség eloszlások | 83 |
| Egy esemény indikátor-változója | 83 |
| A binomiális eloszlás | 84 |
| A polinomális eloszlás | 88 |
| A geometriai eloszlás | 88 |
| A Poisson-eloszlás | 90 |
| A normális eloszlás | 93 |
| A binomiális eloszlás közelítése normális eloszlással | 101 |
| A nagyszámok törvényei | 117 |
| A nagy számok törvényének Bernoulli-féle alakja | 117 |
| A központi határeloszlástétel | 121 |
| 3. fejezet | 125 |
| A matematikai statisztika elemei | 125 |
| A matematikai statisztika tárgya és módszerei | 125 |
| A statisztikai minta fogalma | 128 |
| A tapasztalati (empirikus) eloszlásfüggvény | 130 |
| A gyakorisági- és sűrűséghisztogram | 132 |
| A statisztikai függvény fogalma | 135 |
| A rendezett minták elmélete | 142 |
| Becsléselmélet | 147 |
| A becslés fogalma | 147 |
| A becslés tulajdonságai | 149 |
| A becslés módszerei | 163 |
| A becslés megbízhatósága. Konfidenciaintervallumok | 171 |
| A statisztikai hipotézisek (feltevések) vizsgálata | 176 |
| Elvi megjegyzések | 176 |
| A statisztikai próba fogalma. Paraméteres próbák | 179 |
| Az U-próba | 180 |
| A próba ereje. Erőfüggvény | 187 |
| A t-próba (Student-próba) | 189 |
| Az F-próba | 192 |
| A Welch-próba | 194 |
| A Bartlett-próba | 195 |
| Szekvenciális módszer hipotézisvizsgálatra | 196 |
| Késztermékek minőségellenőrzésének matematikai statisztikai módszerei | 205 |
| Nem paraméteres próbák | 212 |
| Illeszkedésvizsgálat | 214 |
| Homogenitásvizsgálat | 226 |
| Függetlenségvizsgálat x2 próbával | 241 |
| A döntésfüggvények elméletének elemei | 243 |
| A statisztikai döntési eljárás | 244 |
| Veszteségfüggvény és kockázatfüggvény | 245 |
| A Bayes-féle döntési elv | 247 |
| Korreláció- és regresszióelmélet | 252 |
| A valószínűségi változók közötti sztochasztikus kapcsolatokról | 252 |
| Korreláció- és regresszióelmélet két valószínűségi változó esetén | 252 |
| A regressziós egyenes meghatározása a legkisebb négyzetek módszerével | 259 |
| A regressziós egyenes paramétereinek becslée | 260 |
| Regressziós parabolák | 267 |
| Korreláció- és regresszió kétdimenziós normális eloszlás esetében | 269 |
| Korrelációs és regressziós több változó esetén | 275 |
| Parciális korreláció | 277 |